Respuesta :

○=> Correct option :

[tex]\color{hotpink}\bold{ (a) \: 130}[/tex]

○=> Steps to derive correct option :

Angle (p+7)° and angle (3p+1)° are a linear pair so their sum will be equal to 180°.

Which means :

[tex] =\tt 3p + 1 + p + 7 = 180[/tex]

Let us solve that equation to find the value of p and the two angles :

[tex] =\tt 3p + 1 + p + 7 = 180[/tex]

[tex] =\tt 3p + p + 1 + 7 = 180[/tex]

[tex] =\tt 4p + 8 = 180[/tex]

[tex] = \tt4p = 180 - 8[/tex]

[tex] = \tt4p = 172[/tex]

[tex] =\tt p = \frac{172}{4} [/tex]

[tex]\hookrightarrow \tt \color{plum}p = 43[/tex]

Thus, value of p = 43

Measure of angle (p+7)° :

[tex] =\tt 43 + 7[/tex]

[tex]\tt\color{plum}angle \: (p + 7)° =\tt 50°[/tex]

Measure of angle (3p+1)° :

[tex] =\tt 43 \times 3 + 1[/tex]

[tex] = \tt129 + 1[/tex]

[tex]\tt\color{plum}angle \: (3p + 1)° = 130°[/tex]

Thus, the measure of the larger angle = 130°

Therefore, the correct option is (a) 130