Answer:
A)58cm
B)[tex]h=4\sqrt{5}cm[/tex]
C)125.55square cm
Step-by-step explanation:
AB is a line is symmetry
Total length of left half part=12cm+9cm+3cm+5cm
Total length of left half part=29 cm
Length of left half part=Length of right half part
Therefore, length of right half part=29 cm
A) Perimeter of the shape=29cm+29cm=58cm
B)
Pythagoras theorem
[tex](Hypotenuse)^2=(Base)^2+(Perpendicular\;side)^2[/tex]
Hypotenuse=12 cm
Base=5+3=8cm
In triangle ADC
Now, using Pythagoras theorem
[tex](12)^2=8^2+h^2[/tex]
[tex]144=64+h^2[/tex]
[tex]h^2=144-64=80[/tex]
[tex]h=\sqrt{80}=4\sqrt{5}cm[/tex]
C)
Area of shape=Area of triangle+ area of rectangle
Area of shape=[tex]\frac{1}{2}\times b\times h+l\times b[/tex]
Where l=9cm
breadth=3+3=6cm
h=[tex]4\sqt{5}cm[/tex]
base=2(5)+3(2)=16cm
Area of shape=[tex]\frac{1}{2}\times\times 16\times 4\sqrt{5}+9\times 6[/tex]
Area of shape=125.55 square cm