Solve using the quadratic formula
![Solve using the quadratic formula class=](https://us-static.z-dn.net/files/d6f/359610d15fc60fd8ca980392730d3cd2.png)
Answer:
w = [tex]3\sqrt{2}[/tex] or w = [tex]-3\sqrt{2}[/tex]
Step-by-step explanation:
5w^2 - 90 = 0
5w^2 + 0w - 90 = 0
aw^2 + bw + c = 0 ----> a = 5, b = 0, c = -90
[tex]w = \frac{-b +- \sqrt{b^{2} - 4ac} }{2a}[/tex]
[tex]w = \frac{-0 +- \sqrt{0^{2} - 4(5)(-90)} }{2(5)}[/tex]
[tex]w = \frac{-0 +- \sqrt{0 + 1800}} {10}[/tex]
[tex]w = \frac{0 +- \sqrt{1800}}{10}[/tex]
[tex]w = \frac{0 + \sqrt{1800} }{10}[/tex] or [tex]w = \frac{0 - \sqrt{1800}}{10}[/tex]
[tex]w = \frac{30\sqrt{2} }{10}[/tex] or [tex]w = \frac{-30\sqrt{2}} {10}[/tex]
[tex]w = 3\sqrt{2}[/tex] or [tex]w = - 3\sqrt{2}[/tex]
Hope this helps!