The polynomial below is a perfect square trinomial of the form A2 - 2AB + B2.
![The polynomial below is a perfect square trinomial of the form A2 2AB B2 class=](https://us-static.z-dn.net/files/d1c/8ff105eb72d2cc919719e0430604c686.png)
Answer: Option B.
Step-by-step explanation:
Given the polynomial:
[tex]16x^2-36x+9[/tex]
Observe that [tex]16x^2[/tex] and [tex]9[/tex] are perfect squares. Then, you can rewrite the polynomial in this form:
[tex](4x)^2-36x+(3)^2[/tex]
You can identify that:
[tex]A=4\\B=3[/tex]
Then, we can check if [tex]2AB=36[/tex]
[tex]2(4x)(3)=36x\\\\24x\neq 36x\\\\2AB\neq36x[/tex]
Since [tex]2AB\neq36x[/tex], the polynomial [tex]16x^2-36x+9[/tex] IS NOT a perfect square trinomial of the form [tex]A^2 - 2AB + B^2[/tex]