Answer: 69.72 kg of cryolite will be produced.
Explanation:
The balanced chemical equation is:
[tex]Al_2O_3(s)+6NaOH(l)+12HF(g)\rightarrow 2Na_3AlF_6+9H_2O[/tex]
To calculate the moles, we use the equation:
[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text {Molar mass}}[/tex]
moles of [tex]Al_2O_3[/tex] = [tex]\frac{16.9\times 1000g}{102g/mol}=165.7moles[/tex]
moles of [tex]NaOH[/tex] = [tex]\frac{57.4\times 1000g}{40g/mol}=1435moles[/tex]
moles of [tex]HF[/tex] = [tex]\frac{57.4\times 1000g}{20g/mol}=2870moles[/tex]
As 1 mole of [tex]Al_2O_3[/tex] reacts with 6 moles of [tex]NaOH[/tex]
166 moles of [tex]Al_2O_3[/tex] reacts with = [tex]\frac{6}{1}\times 166=996[/tex] moles of [tex]NaOH[/tex]
As 1 mole of [tex]Al_2O_3[/tex] reacts with 12 moles of [tex]HF[/tex]
166 moles of [tex]Al_2O_3[/tex] reacts with = [tex]\frac{12}{1}\times 166=1992[/tex] moles of [tex]HF[/tex]
Thus [tex]Al_2O_3[/tex] is the limiting reagent.
As 1 mole of [tex]Al_2O_3[/tex] produces = 2 moles of cryolite
166 moles of [tex]Al_2O_3[/tex] reacts with = [tex]\frac{2}{1}\times 166=332[/tex] moles of cryolite
Mass of cryolite [tex](Na_3AlF_6)[/tex] = [tex]moles\times {\text {molar mass}}=332mol\times 210g/mol=69720g=69.72kg[/tex]
Thus 69.72 kg of cryolite will be produced.