If 16.9 kg of Al2O3(s), 57.4 kg of NaOH(l), and 57.4 kg of HF(g) react completely, how many kilograms of cryolite will be produced

Respuesta :

Answer: 69.72 kg of cryolite will be produced.

Explanation:

The balanced chemical equation is:

[tex]Al_2O_3(s)+6NaOH(l)+12HF(g)\rightarrow 2Na_3AlF_6+9H_2O[/tex]

To calculate the moles, we use the equation:

[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text {Molar mass}}[/tex]

moles of [tex]Al_2O_3[/tex] = [tex]\frac{16.9\times 1000g}{102g/mol}=165.7moles[/tex]

moles of [tex]NaOH[/tex] = [tex]\frac{57.4\times 1000g}{40g/mol}=1435moles[/tex]

moles of [tex]HF[/tex] = [tex]\frac{57.4\times 1000g}{20g/mol}=2870moles[/tex]

As 1 mole of [tex]Al_2O_3[/tex] reacts with 6 moles of [tex]NaOH[/tex]

166 moles of  [tex]Al_2O_3[/tex] reacts with = [tex]\frac{6}{1}\times 166=996[/tex] moles of [tex]NaOH[/tex]

As 1 mole of [tex]Al_2O_3[/tex] reacts with 12 moles of [tex]HF[/tex]

166 moles of  [tex]Al_2O_3[/tex] reacts with = [tex]\frac{12}{1}\times 166=1992[/tex] moles of [tex]HF[/tex]

Thus [tex]Al_2O_3[/tex] is the limiting reagent.

As 1 mole of [tex]Al_2O_3[/tex] produces = 2 moles of cryolite

166 moles of  [tex]Al_2O_3[/tex] reacts with = [tex]\frac{2}{1}\times 166=332[/tex] moles of cryolite

Mass of cryolite [tex](Na_3AlF_6)[/tex] = [tex]moles\times {\text {molar mass}}=332mol\times 210g/mol=69720g=69.72kg[/tex]

Thus 69.72 kg of cryolite will be produced.

ACCESS MORE