Respuesta :

Given:

Radius of circle = 12 units

Area of sector = 24π sq. units.

Central angle = x

To find:

The value of x.

Solution:

We have,

[tex]r=12[/tex]

[tex]A=24\pi[/tex]

[tex]\theta = x[/tex]

We know that, area of a sector is

[tex]A=\dfrac{\theta }{360^\circ}\pi r^2[/tex]

Where, [tex]\theta[/tex] is central angle, r is radius.

[tex]24\pi=\dfrac{x}{360^\circ}\pi (12)^2[/tex]

[tex]24\pi=\dfrac{x}{360^\circ}\pi (144)[/tex]

[tex]\dfrac{24\pi}{144\pi}=\dfrac{x}{360^\circ}[/tex]

[tex]\dfrac{1}{6}=\dfrac{x}{360^\circ}[/tex]

Multiply both sides by 360 degrees.

[tex]\dfrac{1}{6}\times 360^\circ=x[/tex]

[tex]60^\circ=x[/tex]

The value of x is 60 degrees.

Therefore, the correct option is A.

ACCESS MORE