Respuesta :
A)
The slope-intercept form:
[tex]y=mx+b[/tex]
m - slope
b - y-intercept
The formula of a slope:
[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]
We have the points (2, 5.1) and (-1, -0.5). Substitute:
[tex]m=\dfrac{-0.5-5.1}{-1-2}=\dfrac{-5.6}{-3}=\dfrac{5.6}{3}=\dfrac{56}{30}=\dfrac{28}{15}[/tex]
Therefore we have:
[tex]y=\dfrac{28}{15}x+b[/tex]
Put the coordinates of the point (-1, -0.5) ot the equation:
[tex]-0.5=\dfrac{28}{15}(-1)+b[/tex]
[tex]-0.5=-\dfrac{28}{15}+b[/tex] multiply both sides by 2
[tex]-1=-\dfrac{56}{15}+2b[/tex] add [tex]\dfrac{56}{15}[/tex] to both sides
[tex]\dfrac{41}{15}=2b[/tex] divide both sides by 2
[tex]b=\dfrac{41}{30}[/tex]
Answer: [tex]\boxed{y=\dfrac{28}{15}x+\dfrac{41}{30}}[/tex]
-------------------------------------------------------------------------
B)
We have the points (-2, 3) and (3, -4).
Calculate the slope:
[tex]m=\dfrac{-4-3}{3-(-2)}=\dfrac{-7}{5}=-\dfrac{7}{5}[/tex]
Therefore we have:
[tex]y=-\dfrac{7}{5}x+b[/tex]
Put the coordinates of the point (-2, 3) to the equation of a line:
[tex]3=-\dfrac{7}{5}(-2)+b[/tex]
[tex]\dfrac{15}{5}=\dfrac{14}{5}+b[/tex] subtract [tex]\dfrac{14}{5}[/tex] from both sides
[tex]\dfrac{1}{5}=b\to b=\dfrac{1}{5}[/tex]
Answer: [tex]\boxed{y=-\dfrac{7}{5}x+\dfrac{1}{5}}[/tex]