A) What is the equation of the line that passes through the given pair points in slope-intercept form?
(2, 5.1) and (−1, −0.5)

B) What is the equation of the line that passes through the given pair points in slope-intercept form?
(−2, 3) and (3, −4)

Respuesta :

gmany

A)

The slope-intercept form:

[tex]y=mx+b[/tex]

m - slope

b - y-intercept

The formula of a slope:

[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]

We have the points (2, 5.1) and (-1, -0.5). Substitute:

[tex]m=\dfrac{-0.5-5.1}{-1-2}=\dfrac{-5.6}{-3}=\dfrac{5.6}{3}=\dfrac{56}{30}=\dfrac{28}{15}[/tex]

Therefore we have:

[tex]y=\dfrac{28}{15}x+b[/tex]

Put the coordinates of the point (-1, -0.5) ot the equation:

[tex]-0.5=\dfrac{28}{15}(-1)+b[/tex]

[tex]-0.5=-\dfrac{28}{15}+b[/tex]     multiply both sides by 2

[tex]-1=-\dfrac{56}{15}+2b[/tex]       add [tex]\dfrac{56}{15}[/tex] to both sides

[tex]\dfrac{41}{15}=2b[/tex]            divide both sides by 2

[tex]b=\dfrac{41}{30}[/tex]

Answer: [tex]\boxed{y=\dfrac{28}{15}x+\dfrac{41}{30}}[/tex]

-------------------------------------------------------------------------

B)

We have the points (-2, 3) and (3, -4).

Calculate the slope:

[tex]m=\dfrac{-4-3}{3-(-2)}=\dfrac{-7}{5}=-\dfrac{7}{5}[/tex]

Therefore we have:

[tex]y=-\dfrac{7}{5}x+b[/tex]

Put the coordinates of the point (-2, 3) to the equation of a line:

[tex]3=-\dfrac{7}{5}(-2)+b[/tex]

[tex]\dfrac{15}{5}=\dfrac{14}{5}+b[/tex]              subtract [tex]\dfrac{14}{5}[/tex] from both sides

[tex]\dfrac{1}{5}=b\to b=\dfrac{1}{5}[/tex]

Answer: [tex]\boxed{y=-\dfrac{7}{5}x+\dfrac{1}{5}}[/tex]

ACCESS MORE