Answer:
Proved
[tex]A^2 - B^2 = 20, 40,60,80...[/tex]
Step-by-step explanation:
Given
[tex]A = N + 1[/tex]
[tex]B = N - 1[/tex]
Required
Prove that [tex]A\² - B\²[/tex] is a multiple of 20
First, we need to evaluate [tex]A\² - B\²[/tex]
Start by applying difference of two squares
[tex]A\² - B\² = (A + B)(A - B)[/tex]
Substitute values for A and B
[tex]A\² - B\²= (N + 1 + N - 1)(N + 1 -(N-1))[/tex]
[tex]A\² - B\² = (N + 1 + N - 1)(N + 1 - N + 1)[/tex]
Collect Like Terms
[tex]A\² - B\² = (N + N+ 1 - 1)(N - N + 1+ 1)[/tex]
[tex]A\² - B\² = (2N)(2)[/tex]
[tex]A\² - B\² = 2N*2[/tex]
[tex]A\² - B\² = 4N[/tex]
Since, N is a multiple of 5, then the possible values of N are:
[tex]N = 5, 10, 15, 20...[/tex]
For each of these values, the possible values of [tex]A^2 - B^2[/tex] are
[tex]A^2 - B^2 = 4N: 4 * 5, 4*10,4*15,4*20...[/tex]
[tex]A^2 - B^2 = 20, 40,60,80...[/tex]
The above shows that [tex]A^2 - B^2[/tex] is a multiple of 20