Respuesta :

Answer:

Proved

[tex]A^2 - B^2 = 20, 40,60,80...[/tex]

Step-by-step explanation:

Given

[tex]A = N + 1[/tex]

[tex]B = N - 1[/tex]

Required

Prove that [tex]A\² - B\²[/tex] is a multiple of 20

First, we need to evaluate [tex]A\² - B\²[/tex]

Start by applying difference of two squares

[tex]A\² - B\² = (A + B)(A - B)[/tex]

Substitute values for A and B

[tex]A\² - B\²= (N + 1 + N - 1)(N + 1 -(N-1))[/tex]

[tex]A\² - B\² = (N + 1 + N - 1)(N + 1 - N + 1)[/tex]

Collect Like Terms

[tex]A\² - B\² = (N + N+ 1 - 1)(N - N + 1+ 1)[/tex]

[tex]A\² - B\² = (2N)(2)[/tex]

[tex]A\² - B\² = 2N*2[/tex]

[tex]A\² - B\² = 4N[/tex]

Since, N is a multiple of 5, then the possible values of N are:

[tex]N = 5, 10, 15, 20...[/tex]

For each of these values, the possible values of [tex]A^2 - B^2[/tex] are

[tex]A^2 - B^2 = 4N: 4 * 5, 4*10,4*15,4*20...[/tex]

[tex]A^2 - B^2 = 20, 40,60,80...[/tex]

The above shows that [tex]A^2 - B^2[/tex] is a multiple of 20

RELAXING NOICE
Relax