Respuesta :

Question:

If g(x) is the inverse of f(x) and f(x) = 4x+12 what is g(x)?

Answer:

[tex]g(x) = \frac{x}{4} -3[/tex]

Step-by-step explanation:

Given

[tex]f(x) = 4x + 12[/tex]

Required

Find g(x)

[tex]f(x) = 4x + 12[/tex]

Replace f(x) with y

[tex]y = 4x + 12[/tex]

Swap the positions of y and x

[tex]x = 4y + 12[/tex]

Make y the subject: Subtract 12 from both sides

[tex]x -12= 4y + 12-12[/tex]

[tex]x -12= 4y[/tex]

Make y the subject: Divide through by 3

[tex]\frac{x}{4} -\frac{12}{4}= \frac{4y }{4}[/tex]

[tex]\frac{x}{4} -\frac{12}{4}= y[/tex]

[tex]y = \frac{x}{4} -\frac{12}{4}[/tex]

Since g(x) is the inverse, replace y with g(x)

[tex]g(x) = \frac{x}{4} -\frac{12}{4}[/tex]

[tex]g(x) = \frac{x}{4} -3[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico