Respuesta :
Answer:
See below for Part A.
Part B)
[tex]\displaystyle h=\Big(\frac{125}{\pi}+27\Big)^\frac{2}{3}-9\approx7.4614[/tex]
Step-by-step explanation:
Part A)
The parabola given by the equation:
[tex]y^2=4ax[/tex]
From 0 to h is revolved about the x-axis.
We can take the principal square root of both sides to acquire our function:
[tex]y=f(x)=\sqrt{4ax}[/tex]
Please refer to the attachment below for the sketch.
The area of a surface of revolution is given by:
[tex]\displaystyle S=2\pi\int_{a}^{b}r(x)\sqrt{1+\big[f^\prime(x)]^2} \,dx[/tex]
Where r(x) is the distance between f and the axis of revolution.
From the sketch, we can see that the distance between f and the AoR is simply our equation y. Hence:
[tex]r(x)=y(x)=\sqrt{4ax}[/tex]
Now, we will need to find f’(x). We know that:
[tex]f(x)=\sqrt{4ax}[/tex]
Then by the chain rule, f’(x) is:
[tex]\displaystyle f^\prime(x)=\frac{1}{2\sqrt{4ax}}\cdot4a=\frac{2a}{\sqrt{4ax}}[/tex]
For our limits of integration, we are going from 0 to h.
Hence, our integral becomes:
[tex]\displaystyle S=2\pi\int_{0}^{h}(\sqrt{4ax})\sqrt{1+\Big(\frac{2a}{\sqrt{4ax}}\Big)^2}\, dx[/tex]
Simplify:
[tex]\displaystyle S=2\pi\int_{0}^{h}\sqrt{4ax}\Big(\sqrt{1+\frac{4a^2}{4ax}}\Big)\,dx[/tex]
Combine roots;
[tex]\displaystyle S=2\pi\int_{0}^{h}\sqrt{4ax\Big(1+\frac{4a^2}{4ax}\Big)}\,dx[/tex]
Simplify:
[tex]\displaystyle S=2\pi\int_{0}^{h}\sqrt{4ax+4a^2}\, dx[/tex]
Integrate. We can consider using u-substitution. We will let:
[tex]u=4ax+4a^2\text{ then } du=4a\, dx[/tex]
We also need to change our limits of integration. So:
[tex]u=4a(0)+4a^2=4a^2\text{ and } \\ u=4a(h)+4a^2=4ah+4a^2[/tex]
Hence, our new integral is:
[tex]\displaystyle S=2\pi\int_{4a^2}^{4ah+4a^2}\sqrt{u}\, \Big(\frac{1}{4a}\Big)du[/tex]
Simplify and integrate:
[tex]\displaystyle S=\frac{\pi}{2a}\Big[\,\frac{2}{3}u^{\frac{3}{2}}\Big|^{4ah+4a^2}_{4a^2}\Big][/tex]
Simplify:
[tex]\displaystyle S=\frac{\pi}{3a}\Big[\, u^\frac{3}{2}\Big|^{4ah+4a^2}_{4a^2}\Big][/tex]
FTC:
[tex]\displaystyle S=\frac{\pi}{3a}\Big[(4ah+4a^2)^\frac{3}{2}-(4a^2)^\frac{3}{2}\Big][/tex]
Simplify each term. For the first term, we have:
[tex]\displaystyle (4ah+4a^2)^\frac{3}{2}[/tex]
We can factor out the 4a:
[tex]\displaystyle =(4a)^\frac{3}{2}(h+a)^\frac{3}{2}[/tex]
Simplify:
[tex]\displaystyle =8a^\frac{3}{2}(h+a)^\frac{3}{2}[/tex]
For the second term, we have:
[tex]\displaystyle (4a^2)^\frac{3}{2}[/tex]
Simplify:
[tex]\displaystyle =(2a)^3[/tex]
Hence:
[tex]\displaystyle =8a^3[/tex]
Thus, our equation becomes:
[tex]\displaystyle S=\frac{\pi}{3a}\Big[8a^\frac{3}{2}(h+a)^\frac{3}{2}-8a^3\Big][/tex]
We can factor out an 8a^(3/2). Hence:
[tex]\displaystyle S=\frac{\pi}{3a}(8a^\frac{3}{2})\Big[(h+a)^\frac{3}{2}-a^\frac{3}{2}\Big][/tex]
Simplify:
[tex]\displaystyle S=\frac{8\pi}{3}\sqrt{a}\Big[(h+a)^\frac{3}{2}-a^\frac{3}{2}\Big][/tex]
Hence, we have verified the surface area generated by the function.
Part B)
We have:
[tex]y^2=36x[/tex]
We can rewrite this as:
[tex]y^2=4(9)x[/tex]
Hence, a=9.
The surface area is 1000. So, S=1000.
Therefore, with our equation:
[tex]\displaystyle S=\frac{8\pi}{3}\sqrt{a}\Big[(h+a)^\frac{3}{2}-a^\frac{3}{2}\Big][/tex]
We can write:
[tex]\displaystyle 1000=\frac{8\pi}{3}\sqrt{9}\Big[(h+9)^\frac{3}{2}-9^\frac{3}{2}\Big][/tex]
Solve for h. Simplify:
[tex]\displaystyle 1000=8\pi\Big[(h+9)^\frac{3}{2}-27\Big][/tex]
Divide both sides by 8π:
[tex]\displaystyle \frac{125}{\pi}=(h+9)^\frac{3}{2}-27[/tex]
Isolate term:
[tex]\displaystyle \frac{125}{\pi}+27=(h+9)^\frac{3}{2}[/tex]
Raise both sides to 2/3:
[tex]\displaystyle \Big(\frac{125}{\pi}+27\Big)^\frac{2}{3}=h+9[/tex]
Hence, the value of h is:
[tex]\displaystyle h=\Big(\frac{125}{\pi}+27\Big)^\frac{2}{3}-9\approx7.4614[/tex]

You seem to have left out that 0 ≤ x ≤ h.
From y² = 4ax, we get that the top half of the parabola (the part that lies in the first quadrant above the x-axis) is given by y = √(4ax) = 2√(ax). Then the area of the surface obtained by revolving this curve between x = 0 and x = h about the x-axis is
[tex]2\pi\displaystyle\int_0^h y(x) \sqrt{1+\left(\frac{\mathrm dy(x)}{\mathrm dx}\right)^2}\,\mathrm dx[/tex]
We have
y(x) = 2√(ax) → y'(x) = 2 • a/(2√(ax)) = √(a/x)
so the integral is
[tex]4\sqrt a\pi\displaystyle\int_0^h \sqrt x \sqrt{1+\frac ax}\,\mathrm dx[/tex]
[tex]=\displaystyle4\sqrt a\pi\int_0^h (x+a)^{\frac12}\,\mathrm dx[/tex]
[tex]=4\sqrt a\pi\left[\dfrac23(x+a)^{\frac32}\right]_0^h[/tex]
[tex]=\dfrac{8\pi\sqrt a}3\left((h+a)^{\frac32}-a^{\frac32}\right)[/tex]
Now, if y² = 36x, then a = 9. So if the area is 1000, solve for h :
[tex]1000=8\pi\left((h+9)^{\frac32}-27\right)[/tex]
[tex]\dfrac{125}\pi=(h+9)^{\frac32}-27[/tex]
[tex]\dfrac{125+27\pi}\pi=(h+9)^{\frac32}[/tex]
[tex]\left(\dfrac{125+27\pi}\pi\right)^{\frac23}=h+9[/tex]
[tex]\boxed{h=\left(\dfrac{125+27\pi}\pi\right)^{\frac23}-9}[/tex]