Answer:
The value of the expression is, [tex]\frac{1}{x+6}[/tex].
Step-by-step explanation:
The expression is as follows:
[tex]\frac{5x^{2}+6x+1}{x^{2}+7x+6}\div (5x+1)[/tex]
Solve as follows:
[tex]\frac{5x^{2}+6x+1}{x^{2}+7x+6}\div (5x+1)=\frac{5x^{2}+6x+1}{x^{2}+7x+6}\times \frac{1}{5x+1}[/tex]
[tex]=\frac{5x^{2}+5x+x+1}{x^{2}+6x+x+6}\times\frac{1}{5x+1}\\\\=\frac{(5x+1)(x+1)}{(x+6)(x+1)}\times\frac{1}{5x+1}\\\\=\frac{1}{x+6}[/tex]
Thus, the value of the expression is, [tex]\frac{1}{x+6}[/tex].