Respuesta :

Answer:

The equation of a line that passes through the points (-2, 8) and (1,−1) in the fully reduced form will be:

  • [tex]y=-3x+2[/tex]

Step-by-step explanation:

Given the points

  • (-2, 8) and (1, -1)

[tex]\mathrm{Slope\:between\:two\:points}:\quad \mathrm{Slope}=\frac{y_2-y_1}{x_2-x_1}[/tex]

[tex]\left(x_1,\:y_1\right)=\left(-2,\:8\right),\:\left(x_2,\:y_2\right)=\left(1,\:-1\right)[/tex]

[tex]m=\frac{-1-8}{1-\left(-2\right)}[/tex]

[tex]m=-3[/tex]

As the equation of a line in point-slope form is given by:

[tex]y-y_1=m\left(x-x_1\right)[/tex]

substituting the values m = -3 and the point (-2, 8)

[tex]y-8=-3\left(x-\left(-2\right)\right)[/tex]

[tex]y-8=-3\left(x+2\right)[/tex]

[tex]y-8+8=-3\left(x+2\right)+8[/tex]

[tex]y=-3x+2[/tex]

Therefore, the equation of a line that passes through the points (-2, 8) and (1,−1) in the fully reduced form will be:

  • [tex]y=-3x+2[/tex]
ACCESS MORE