The rotational inertia of a collapsing spinning star changes to 1/6 its initial value. What is the ratio of the new rotational kinetic energy to the initial rotational kinetic energy

Respuesta :

Answer:

Explanation:

Let the initial rotational inertia be I and final rotational inertia be I / 6 .

Let the initial angular velocity be ω₁ and final angular velocity be ω₂.

Applying conservation of angular momentum law

I x ω₁ = I / 6 x ω₂

6 ω₁  = ω₂

initial rotational kinetic energy = 1/2 I x ω₁ ²

Final  rotational kinetic energy = 1/2 ( I / 6 ) x ω₂ ²

Final  rotational kinetic energy / initial rotational kinetic energy

= ( 1 / 6 ) x ω₂ ² / ω₁ ²

=  ω₂ ² / 6ω₁ ²

= 36 ω₁ ² / 6ω₁ ²

= 6 .

The ratio will be "6". A further solution is below.

Let,

The initial rotational inertia,

  • [tex]\omega_1 = 1[/tex]

The final rotational inertia,

  • [tex]\omega_2 = \frac{1}{6}[/tex]

By applying the conservation of angular momentum law, we get

→ [tex]1\times \omega_1 = \frac{1}{6}\times \omega_2[/tex]

→    [tex]6 \ \omega_1 = \omega_2[/tex]

Now,

Initial rotational K.E = [tex]\frac{1}{2}1\times \omega_1^2[/tex]

Final rotational K.E = [tex]\frac{1}{2} (\frac{1}{6} )\times \omega_2^2[/tex]

hence,

→ [tex]\frac{Final \ rotational \ K.E}{Initial \ rotational \ K.E} = \frac{(\frac{1}{6} )\times \omega_2^2}{\omega_1^2}[/tex]

                                  [tex]= \frac{\omega_2^2}{6 \omega_1^2}[/tex]

                                  [tex]= 6[/tex]

Thus the answer above is right.

Learn more:

https://brainly.com/question/25347365

ACCESS MORE