Answer:
Step-by-step explanation:
You can use the Heron's formula:
[tex]A=\sqrt{p(p-a)(p-b)(p-c)}[/tex]
where
p - half of perimeter
a, b, c - lengths of sides
We have
[tex]a=12m;\ b=15m;\ c=9m[/tex]
Calculate:
[tex]p=\dfrac{12+15+9}{2}=\dfrac{36}{2}=18\ (m)\\\\A=\sqrt{18(18-12)+(18-15)(18-9)}\\\\A=\sqrt{(18)(6)(3)(9)}\\\\A=\sqrt{2916}\\\\A=54\ (m^2)[/tex]
Let's check that it is not a right triangle.
If the sum of the squares of the two shorter sides is equal to the square of the longest side, then this triangle is rectangular.
We have
[tex]9m < 12m<15m[/tex]
Check:
[tex]9^2+12^2=81+144=225\\15^2=225[/tex]
This is a right trianglr wherew 9m and 12m are legs and 15m is a hypotenuse.
The formula of an area of a right triangle is:
[tex]A=\dfrac{ab}{2}[/tex]
a, b - legs
Substitute:
[tex]A=\dfrac{(9)(12)}{2}=\dfrac{108}{2}=54\ (m^2)[/tex]