Respuesta :
Answer:
It'll take 12 years
Step-by-step explanation:
Given
Type A:
[tex]Initial\ Height = 10ft[/tex]
[tex]Growth = 19in[/tex]
Type B:
[tex]Initial\ Height = 4ft[/tex]
[tex]Growth = 25in[/tex]
Required
Determine the years they'll reach the same height
First, convert feet to inches in both measurements (this is done by multiplying measurement by 12):
Type A:
[tex]Initial\ Height = 10ft[/tex]
[tex]Initial\ Height = 10 * 12in[/tex]
[tex]Initial\ Height = 120in[/tex]
Type B:
[tex]Initial\ Height = 4ft[/tex]
[tex]Initial\ Height = 4 * 12in[/tex]
[tex]Initial\ Height = 48in[/tex]
The height at any year from both trees is calculated using
[tex]Height = Iniital\ Height + Growth * x[/tex]
Where x represents the year;
For Type A:
[tex]Height = 120+ 19 * x[/tex]
[tex]Height = 120+ 19x[/tex]
For Type B:
[tex]Height = 48+ 25 * x[/tex]
[tex]Height = 48+ 25x[/tex]
To get when their height will be equal, we simply equate both expressions:
[tex]48+ 25x = 120 + 19x[/tex]
Collect Like Terms
[tex]25x - 19x= 120 - 48[/tex]
[tex]6x= 72[/tex]
Solve for x
[tex]x = 72/6[/tex]
[tex]x = 12[/tex]
Hence, It'll take 12 years