Unit 4 homework 3 Gina Wilson pls help w homework!
![Unit 4 homework 3 Gina Wilson pls help w homework class=](https://us-static.z-dn.net/files/d0f/59a0939d9ac5af6f91bd1e3c4f9e3f7b.png)
Answer/Step-by-step explanation:
1. An isosceles ∆ has two equal sides. The base angles of an isosceles ∆ are also equal.
Therefore:
m<U = 54° (base angle of isosceles ∆)
m<T = 180 - (54 + 54) (sum of ∆)
m<T = 72°
2. ∆LMN is an isosceles ∆, therefore:
m<M = ½*(180 - 28) = 76°
m<N = m<M (base angle of isosceles)
m<N = 76°
3. ∆FEG is an isosceles ∆, because it has two equal base angles.
Therefore:
EF = FG
EF = 18 in
m<F = 180 - (23 + 23) = 134°
4. ∆PQR is an equilateral ∆. All sides and angles of an equilateral ∆ are equal.
Therefore:
m<P = 60°
m<Q = 60°
m<R = 60°
5. 4x + 23 = 10x - 1 (2 asides of an isosceles ∆ are equal)
Collect like terms
4x - 10x = -23 - 1
-6x = -24
Divide both sides by -6
x = 4
6. 2*(9x - 25) = 180 - 104 (base angles of isosceles ∆)
18x - 50 = 76
Add 50 to both sides
18x = 76 + 50
18x = 126
Divide both sides by 18
x = 7
7. 5x - 7 = 8x - 55 (base angles of an isosceles)
Collect like terms
5x - 8x = 7 - 55
-3x = -48
Divide both sides by -3
x = 16
8. 4x + 8 = 60° (angle of an equilateral ∆)
Subtract 8 from each side
4x = 60 - 8
4x = 52
Divide both sides by 4
x = 13
Angles in a triangle may or may not be congruent.
1. Triangle STU
Triangle STU is an isosceles triangle.
So:
[tex]\mathbf{\angle T = \angle U}[/tex]
This gives
[tex]\mathbf{\angle T + \angle U + \angle S = 180}[/tex] --- sum of angles in a triangle
Substitute [tex]\mathbf{\angle T = \angle U}[/tex]
[tex]\mathbf{\angle T + \angle T + \angle S = 180}[/tex]
[tex]\mathbf{2\angle T + 54 = 180}[/tex]
Subtract 54 from both sides
[tex]\mathbf{2\angle T= 126}[/tex]
[tex]\mathbf{\angle T= 63}[/tex]
So:
[tex]\mathbf{\angle T = 63}[/tex] and [tex]\mathbf{\angle U = 63}[/tex]
2. Triangle LMN
Triangle LMN is an isosceles triangle.
So:
[tex]\mathbf{\angle M = \angle N}[/tex]
This gives
[tex]\mathbf{\angle L+ \angle M + \angle N = 180}[/tex] --- sum of angles in a triangle
Substitute [tex]\mathbf{\angle M = \angle N}[/tex]
[tex]\mathbf{\angle L + \angle M + \angle M = 180}[/tex]
[tex]\mathbf{2\angle M + 28 = 180}[/tex]
Subtract 28 from both sides
[tex]\mathbf{2\angle M= 152}[/tex]
[tex]\mathbf{\angle M= 76}[/tex]
So:
[tex]\mathbf{\angle M= 76}[/tex] and [tex]\mathbf{\angle N= 76}[/tex]
3. Triangle EFG
[tex]\mathbf{\angle F+ 23 + 23 = 180}[/tex] --- sum of angles in a triangle
[tex]\mathbf{\angle F+ 46 = 180}[/tex]
Subtract 46 from both sides
[tex]\mathbf{\angle F = 134}[/tex]
The triangle is an isosceles triangle
So:
[tex]\mathbf{EF = 13}[/tex] and [tex]\mathbf{\angle F = 134}[/tex]
4. Triangle PQR
The triangle is an equilateral triangle
So:
[tex]\mathbf{\angle P = \angle Q = \angle R= 60}[/tex]
Question 5
The triangle is an isosceles triangle.
So:
[tex]\mathbf{4x + 23 = 10x - 1}[/tex]
Collect like terms
[tex]\mathbf{10x - 4x=23+1}[/tex]
[tex]\mathbf{6x=24}[/tex]
Divide both sides by 6
[tex]\mathbf{x=4}[/tex]
Hence, the value of x is 4
Question 6
The triangle is an isosceles triangle.
So:
[tex]\mathbf{9x- 25+9x -25+104 = 180}[/tex]
Collect like terms
[tex]\mathbf{9x+9x = 180-104+25+25}[/tex]
[tex]\mathbf{18x = 126}[/tex]
Divide both sides by 18
[tex]\mathbf{x = 7}[/tex]
Hence, the value of x is 7
Question 7
The triangle is an isosceles triangle.
So:
[tex]\mathbf{5x - 7 = 8x - 55}[/tex]
Collect like terms
[tex]\mathbf{8x - 5x =55- 7}[/tex]
[tex]\mathbf{3x =48}[/tex]
Divide both sides by 3
[tex]\mathbf{x =16}[/tex]
Hence, the value of x is 16
Question 8
The triangle is an equilateral triangle.
So:
[tex]\mathbf{4x + 8 = 60}[/tex]
Subtract 8 from both sides
[tex]\mathbf{4x = 52}[/tex]
Divide both sides by 4
[tex]\mathbf{x = 13}[/tex]
Hence, the value of x is 13
Read more about triangles at:
https://brainly.com/question/2773823