The Lagrangian is
[tex]L(x,y,z,\lambda,\mu)=3x-y-3z+\lambda(x+y-z)+\mu(x^2+2z^2-1)[/tex]
with critical points where its partial derivatives vanish:
[tex]L_x=3+\lambda+2\mu x=0[/tex]
[tex]L_y=-1+\lambda=0\implies\lambda=1[/tex]
[tex]L_z=-3-\lambda+4\mu z=0[/tex]
[tex]L_\lambda=x+y-z=0[/tex]
[tex]L_\mu=x^2+2z^2-1=0\implies x^2+2z^2=1[/tex]
Since we know [tex]\lambda=1[/tex], we have
So there are two critical points, [tex]\left(-\dfrac2{\sqrt6},\dfrac3{\sqrt6},\dfrac1{\sqrt6}\right)[/tex] and [tex]\left(\dfrac2{\sqrt6},-\dfrac3{\sqrt6},-\dfrac1{\sqrt6}\right)[/tex], which give a minimum value of [tex]-2\sqrt6[/tex] and a maximum value of [tex]2\sqrt6[/tex], respectively.