SAT scores: A college admissions officer takes a simple random sample of 100 entering freshmen and computes their mean mathematics SAT score to be 433 . Assume the population standard deviation is 115 .
(a) Construct a 99 % confidence interval for the mean mathematics SAT score for the entering freshman class. Round the answer to the nearest whole number.

Respuesta :

Answer:

The 99% confidence interval is  [tex] 403.33 <  \mu < 462.67 [/tex]  

Step-by-step explanation:

From the question we are told that

  The sample size is  n  =  100

   The sample mean is  [tex]\= x = 433[/tex]

    The standard deviation is [tex]\sigma = 115[/tex]

From the question we are told the confidence level is  99% , hence the level of significance is    

      [tex]\alpha = (100 - 99 ) \%[/tex]

=>   [tex]\alpha = 0.01[/tex]

Generally from the normal distribution table the critical value  of  [tex]\frac{\alpha }{2}[/tex] is  

   [tex]Z_{\frac{\alpha }{2} } =  2.58[/tex]

Generally the margin of error is mathematically represented as  

      [tex]E = Z_{\frac{\alpha }{2} } *  \frac{\sigma }{\sqrt{n} }[/tex]

=>   [tex]E = 2.58 *  \frac{115 }{\sqrt{100} }[/tex]

=>   [tex]E = 29.67 [/tex]

Generally 99% confidence interval is mathematically represented as  

      [tex]\= x -E <  \mu <  \=x  +E[/tex]

=>    [tex]433 -29.67 <  \mu < 433 + 29.67[/tex]    

=>    [tex] 403.33 <  \mu < 462.67 [/tex]  

ACCESS MORE
EDU ACCESS
Universidad de Mexico