Respuesta :
Answer:
Distance (d) = 2.08 cm
Explanation:
From the given information:
A diagrammatic illustration is sketched and the image is attached below:
Suppose 'i' be the total current at any instant.
Then:
[tex]i = \dfrac{dQ}{dt}[/tex]
where Q = 1.0 +5.00t² - 3.0 t
[tex]i = \dfrac{d}{dt}(1.0+5.00t^2-3.0t)[/tex]
i = 10.00t - 3.0
At t = 1s
i = 10.00(1) - 3.0
i = 7.00 amperes
Since the current at P is situated in the outside, the magnetic field B can be computed as:
[tex]B_{out} = \dfrac{\mu_oi}{2 \pi r}[/tex]
[tex]B_{out} = \dfrac{4 \pi \times 10^{-7}(7.00 \ A) }{2 \pi (12.0 \times 10^{-2} \ m)}[/tex]
[tex]B_{out} = 1.1667 \times 10^{-5} \ T[/tex]
Taking the ampere loop with radius (d) into consideration:
The current through the loop can be expressed as:
[tex]i' = (i)(\dfrac{\pi d^2}{\pi R^2})[/tex]
[tex]i' = (i)(\dfrac{d^2}{ R^2})[/tex]
Thus; the magnetic field at P' i.e. the inside point is :
[tex]B_{in} = \dfrac{\mu_o i'}{2 \pi d}[/tex]
[tex]B_{in} = \dfrac{\mu_o }{2 \pi d}(i \dfrac{d^2}{R^2})[/tex]
[tex]B_{in} = \dfrac{\mu_oi }{2 \pi d}(\dfrac{d^2}{R^2})[/tex]
[tex]B_{in} = \dfrac{\mu_oi }{2 \pi }(\dfrac{d}{R^2})[/tex]
[tex]B_{in} = \dfrac{4 \pi \times 10^{-7} \times 7.00 }{2 \pi }(\dfrac{d}{(5.0 \times 10^{-2})^2})[/tex]
[tex]B_{in} = 1.4 \times 10^{-6} \times (\dfrac{d}{0.0025})[/tex]
[tex]B_{in} = 5.6 \times 10^{-4} \ d[/tex]
From the question; Since [tex]B_{out} = B_{in}[/tex]
Then:
[tex]1.1667 \times 10^{-5}= 5.6 \times 10^{-4} \ d[/tex]
[tex]d = \dfrac{1.1667 \times 10^{-5}}{5.6 \times 10^{-4}}[/tex]
d = 0.0208
d = 2.08 cm

