Which of the following are dimensionally consistent? (Choose all that apply.)(a) a=v / t+xv2 / 2(b) x=3vt(c) xa2=x2v / t4(d) x=vt+vt2 / 2(e) v=x2 / at3(f) a3=x2v / t5(g) x=t(h) v=5at

Respuesta :

Complete Question

The  complete question is shown on the first uploaded image

Answer:

A

is dimensionally consistent

B

is not dimensionally consistent

C

is dimensionally consistent

D

is not dimensionally consistent

E

is not dimensionally consistent

F

is dimensionally consistent

G

is dimensionally consistent

H

is not dimensionally consistent

Step-by-step explanation:

From the question we are told that

   The equation are

                        [tex]A) \   \  a^3  =  \frac{x^2 v}{t^5}[/tex]

                       

                       [tex]B) \   \  x  =  t [/tex]

 

                       [tex]C \ \ \ v  =  \frac{x^2}{at^3}[/tex]

 

                      [tex]D \ \ \ xa^2 = \frac{x^2v}{t^4}[/tex]

                      [tex]E \ \ \ x  = vt+ \frac{vt^2}{2}[/tex]

                     [tex]F \ \ \  x = 3vt[/tex]

 

                    [tex]G \ \ \  v =  5at[/tex]

 

                    [tex]H \ \ \  a  =  \frac{v}{t} + \frac{xv^2}{2}[/tex]

Generally in dimension

     x - length is represented as  L

     t -  time is represented as T

     m = mass is represented as M

Considering A

           [tex]a^3  =  (\frac{L}{T^2} )^3 =  L^3\cdot T^{-6}[/tex]

and    [tex]\frac{x^2v}{t^5 } =  \frac{L^2 L T^{-1}}{T^5}  =  L^3 \cdot T^{-6}[/tex]

Hence

           [tex]a^3  =  \frac{x^2 v}{t^5}[/tex] is dimensionally consistent

Considering B

            [tex]x =  L[/tex]

and      

            [tex]t = T[/tex]

Hence

      [tex]x  =  t[/tex]  is not dimensionally consistent

Considering C

     [tex]v  =  LT^{-1}[/tex]

and  

    [tex]\frac{x^2 }{at^3} =  \frac{L^2}{LT^{-2} T^{3}}  =  LT^{-1}[/tex]

Hence

   [tex]v  =  \frac{x^2}{at^3}[/tex]  is dimensionally consistent

Considering D

    [tex]xa^2  = L(LT^{-2})^2 =  L^3T^{-4}[/tex]

and

     [tex]\frac{x^2v}{t^4}  = \frac{L^2(LT^{-1})}{ T^5} =  L^3 T^{-5}[/tex]

Hence

    [tex] xa^2 = \frac{x^2v}{t^4}[/tex]  is not dimensionally consistent

Considering E

   [tex]x =  L[/tex]

;

   [tex]vt  =  LT^{-1} T =  L[/tex]

and  

    [tex]\frac{vt^2}{2}  =  LT^{-1}T^{2} =  LT[/tex]

Hence

   [tex]E \ \ \ x  = vt+ \frac{vt^2}{2}[/tex]   is not dimensionally consistent

Considering F

     [tex]x =  L[/tex]

and

    [tex]3vt = LT^{-1}T =  L[/tex]      Note in dimensional analysis numbers are

                                                       not considered

  Hence

       [tex]F \ \ \  x = 3vt[/tex]  is dimensionally consistent

Considering G

    [tex]v  =  LT^{-1}[/tex]

and

    [tex]at =  LT^{-2}T =  LT^{-1}[/tex]

Hence

      [tex]G \ \ \  v =  5at[/tex]   is dimensionally consistent

Considering H

     [tex]a =  LT^{-2}[/tex]

,

       [tex]\frac{v}{t}  =  \frac{LT^{-1}}{T}  =  LT^{-2}[/tex]

and

    [tex]\frac{xv^2}{2} =  L(LT^{-1})^2 =  L^3T^{-2}[/tex]

Hence

    [tex]H \ \ \  a  =  \frac{v}{t} + \frac{xv^2}{2}[/tex]  is not dimensionally consistent

Ver imagen okpalawalter8

We want to see which ones of the given expressions are dimensionally consistent. We will see that the correct options are:

  • a) x = 3*v*t
  • h) v = 5*a*t

What means to be dimensionally consistent?

This means that we have the same units in the left and in the right side of the equation.

The units are:

  • a = [m/s^2]
  • x = [m]
  • v = [m/s]
  • t = [s]

Now we can analyze the expressions to see the units in each one, I will show you how to do it:

a) a = v/t + x*v^2

Replacing the units we have:

[m/s^2] = [m/s]/[s] + [m]*[m^2/s^2]

[m/s^2] = [m/s^2] + [m^3/s^2]

You can see that we have an m^3 in the right side, so these are not equivalent.

b) x = 3*v*t

Replacing the units we have:

[m] = 3*[m/s]*[s] = 3*[m]

So yes, the units are the same in both sides, so this is dimensionally consistent.

With the same procedure we can see that:

  • c) [m^3/s^2] = [m^3/s]                not consistent
  • d) [m] = [m] + [m*s]                     not consistent
  • e) [m/s] = [m^2]                           not consistent
  • f) [m^3/s^6] = [m^3/s]                 not consistent
  • g) [m] = [s]                                   not consistent
  • h) [m/s] = 5*[m/s]                        consistent

So the correct options are b and h.

If you want to learn more about dimensions, you can read:

https://brainly.com/question/20384972

RELAXING NOICE
Relax