Answer:
[tex]\displaystyle g(f(1)) = 20[/tex]
Step-by-step explanation:
We are given the two functions:
[tex]f(x)=6x+2 \text{ and } g(x)=2x+4[/tex]
And we want to find:
[tex]g(f(1))[/tex]
First, find f(1):
[tex]\displaystyle \begin{aligned} f(1) &= 6(1) + 2 \\ &= 6 + 2 \\ &= 8 \end{aligned}[/tex]
Substitute:
[tex]g(f(1))=g(8)[/tex]
Find g(8):
[tex]\displaystyle \begin{aligned} g(8) &= 2(8) + 4 \\ &= 16 + 4 \\ &= 20 \end{aligned}[/tex]
In conclusion:
[tex]\displaystyle g(f(1)) = 20[/tex]