HELP WILL GIVE 40 POINTS AND BRAINLIEST!!!! Solve these two (second-degree) quadratic equations by factoring. [tex]2x^{2}+6x=0[/tex] & [tex]x^{2}+9x+14=0[/tex]

Respuesta :

Answer:

Step-by-step explanation:

First equation:  2x^2 + 6x = 0 factors into 2x(x + 3) = 0, so either x = 0 or x = -3.

Second equation:  x^2 + 9x + 14 = 0 factors into (x + 2)(x + 7) = 0.  Thus, either x = -2 or x = -7

Hi there! Hopefully this helps!

---------------------------------------------------------------------------------------------------------

Answer for [tex]2x^{2} + 6x = 0[/tex]:

x = 0

x = -3

|

|[tex]2x^{2} + 6x = 0[/tex]

|

|First we factor out x

\/

[tex]x(2x+6)=0[/tex]

To find equation solutions, solve [tex]x = 0[/tex] and [tex]2x+6 = 0[/tex]

|

\/

[tex]x = 0[/tex]

[tex]x = -3[/tex]

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Answer for [tex]x^{2}+ 9x + 14 = 0[/tex]:

x = -2

x = -7

|

|

|[tex]x^{2}+ 9x + 14 = 0[/tex]

|

|To solve the equation, factor [tex]x^{2}+ 9x + 14[/tex] using formula [tex]x^{2} + (a + b)x + ab = (x+a) (x+b).[/tex] To find [tex]a[/tex] and [tex]b[/tex], set up a system to be solved.

|

\/

[tex]a + b = 9[/tex]

[tex]ab = 14[/tex]

|

\/

Since [tex]ab[/tex] is positive, [tex]a[/tex] and [tex]b[/tex] have the same sign. Since [tex]a + b[/tex] is positive, [tex]a[/tex] and [tex]b[/tex] are both positive. List all such integer pairs that give product 14.

1, 14

2, 7

|

\/

Calculate the sum for each pair.

1 + 14 = 15

2 + 7 = 9

|

\/

The solution is the pair that gives sum 9.

[tex]a = 2[/tex]

[tex]b = 7[/tex].

|

\/

Rewrite factored expression [tex](x+a)(x+b)[/tex] using the obtained values.

[tex](x+2)(x+7)[/tex]

|

\/

To find equation solutions, solve [tex]x + 2 = 0[/tex] and [tex]x + 7 = 0[/tex].

|

\/

[tex]x = -2[/tex]

[tex]x = -7[/tex]

ACCESS MORE