Answer:
[tex]c=2.0769\ \frac{J}{g\ \textdegree C}[/tex]
Explanation:
-Specific heat capacity is given by the formula:
[tex]q=mc\bigtriangleup T[/tex]
Where:
[tex]q[/tex] is the heat gained or loosed by the substance
[tex]m[/tex] is the mass of the substance
[tex]c[/tex] is the specific heat of the substance
[tex]\bigtriangleup T[/tex] is the change in temperature
#We make c the subject of the formula and substitute to solve for it:
[tex]q=mc\bigtriangleup T\\\\c=\frac{q}{m\bigtriangleup T}\\\\\bigtriangleup T=(57-32)\textdegree C=25\textdegree C\\\\\therefore c=\frac{6.75\times 10^4J}{1.3\times 1000\ g\times 25\textdegree C}\\\\=2.0769 \ \frac{J}{g\ \textdegree C}[/tex]
Hence, the specific heat capacity of the ice is [tex]2.0769 \frac{J}{g\ \textdegree C}[/tex]