Respuesta :
Given:-
- Height,h = -40 m
- Initial velocity,u = 10 m/s
- Final velocity,v = 0
- Acceleration due to gravity,g = -10 m/s² [ Ball goes up ]
To find out:-
Find time when it strikes ground.
Formula used:-
s = ut + 1/2 at²
Solution:-
We will first calculate the time taken by the ball to reach the highest point by using the formula:
S = ut + 1/2 at²
★ Substituting the values in the above formula,we get:
⇒ -40 = 10 × t + 1/2 × -10 × t²
⇒ -40 = 10t + ( - 5 ) × t²
⇒ -40 = 10t - 5 t²
⇒ 5t² - 10t - 40
⇒ 5t² - 20t + 10t - 40
⇒ 5t ( t - 4 ) + 10 ( t - 4 )
⇒ t - 4 = 0 and 5t + 10 = 0
⇒ t = 4 and t = -2
Thus,time taken is 4 seconds. [ Ignore negative number. ]
Answer:
[tex]\Huge \boxed{\mathrm{4 \ s}}[/tex]
Explanation:
Displacement ⇒ -40 m (the ball strikes the ground)
Initial velocity ⇒ 10 m/s
Acceleration of gravity ⇒ -10 m/s² (upward acceleration)
We can use a formula to find the time taken.
[tex]s = ut + 1/2 at^2[/tex]
[tex]s = \sf displacement \ (m)[/tex]
[tex]u = \sf initial \ velocity \ (m/s)[/tex]
[tex]a = \sf acceleration \ of \ gravity \ (m/s^2)[/tex]
[tex]t = \sf time \ taken \ (s)[/tex]
Plugging in the values.
[tex]-40 = (10)t + 1/2 (-10)t^2[/tex]
Solve for [tex]t[/tex].
[tex]-40 = 10t-5t^2[/tex]
[tex]5t^2-10t-40=0[/tex]
Factor the quadratic expression.
[tex]5(t+2)(t-4)=0[/tex]
Set the factors equal to 0.
[tex]t+2=0\\t=-2[/tex]
[tex]t-4=0\\t=4[/tex]
t = -2 and t = 4 (time value will not be negative in this case)
The time the ball takes to strike the ground is 4 seconds.