Answer:
[tex] \frac{ {tan}^{2} x}{2} + \ln( |cos \: x| ) + C[/tex]
Step-by-step explanation:
[tex] \int {tan}^{3} x \: dx[/tex]
[tex]\int \: tan \: x \times {tan}^{2} x \: dx[/tex]
[tex]\int \: tan \: x( {sec}^{2} x - 1) \: dx[/tex]
distribute
[tex]\int \: tan \: x \: {sec}^{2} x - tan \: x \: dx[/tex]
[tex]\int \: tan \: x \: {sec}^{2} x \: dx \: - \int \: tan \: x \: dx[/tex]
[tex]\int \: tan \: x \: {sec}^{2} x \: dx \: - \int \frac{sin \: x}{cos \: x} \: dx[/tex]
First integrand
let tan x = u
du = sec²x dx
Second integrand
let cos x = z
dz = -sin x dx
[tex] = \int u \: du \: - \int - \frac{1}{z} dz[/tex]
[tex] = \frac{ {u}^{2} }{2} + \ln( |z| ) + C[/tex]
[tex] = \color{red}{ \boxed{ \frac{ {tan}^{2} x}{2} + \ln( |cos \: x| ) + C}}[/tex]