contestada

Complete the slope-intercept form of the linear equation that represents the
relationship in the table.

Complete the slopeintercept form of the linear equation that represents the relationship in the table class=

Respuesta :

Answer:

[tex]\mathsf{y=3x-4}[/tex]

Step-by-step explanation:

[tex]\mathsf{point \ slope \ form \ of \ linear \ equation: \ \ y-y_1=m(x-x_1)}[/tex]

[tex]\mathsf{slope \ (m)=\dfrac{y_2-y_1}{x_2-x_1}}}[/tex]

(where m is the slope and [tex]\mathsf{(x_1,y_1)}[/tex] and [tex]\mathsf{(x_2,y_2)}[/tex] are points on the line)

Given:

  • [tex]\mathsf{(x_1,y_1)=(1,-1)}[/tex]
  • [tex]\mathsf{(x_2,y_2)=(4,8)}[/tex]

[tex]\implies \mathsf{slope=\dfrac{8--1}{4-1}}=3}[/tex]

Substuting m = 3 and point (1, -1) into the point-slope form of a linear equation:

[tex]\implies \mathsf{y-(-1)=3(x-1)}[/tex]

[tex]\implies \mathsf{y=3x-4}[/tex]

ACCESS MORE