Complete the slope-intercept form of the linear equation that represents the
relationship in the table.
![Complete the slopeintercept form of the linear equation that represents the relationship in the table class=](https://us-static.z-dn.net/files/d59/28f5bdd05e88197f2c77887a6fa5c270.png)
Answer:
[tex]\mathsf{y=3x-4}[/tex]
Step-by-step explanation:
[tex]\mathsf{point \ slope \ form \ of \ linear \ equation: \ \ y-y_1=m(x-x_1)}[/tex]
[tex]\mathsf{slope \ (m)=\dfrac{y_2-y_1}{x_2-x_1}}}[/tex]
(where m is the slope and [tex]\mathsf{(x_1,y_1)}[/tex] and [tex]\mathsf{(x_2,y_2)}[/tex] are points on the line)
Given:
[tex]\implies \mathsf{slope=\dfrac{8--1}{4-1}}=3}[/tex]
Substuting m = 3 and point (1, -1) into the point-slope form of a linear equation:
[tex]\implies \mathsf{y-(-1)=3(x-1)}[/tex]
[tex]\implies \mathsf{y=3x-4}[/tex]