Answer:
a
The speed of wave is [tex]v_1 = 129.1 \ m/s[/tex]
b
The new speed of the two waves is [tex]v = 129.1 \ m/s[/tex]
Explanation:
From the question we are told that
The mass of the string is [tex]m = 60 \ g = 60 *10^{-3} \ kg[/tex]
The length is [tex]l = 2.0 \ m[/tex]
The tension is [tex]T = 500 \ N[/tex]
Now the velocity of the first wave is mathematically represented as
[tex]v_1 = \sqrt{ \frac{T}{\mu} }[/tex]
Where [tex]\mu[/tex] is the linear density which is mathematically represented as
[tex]\mu = \frac{m}{l}[/tex]
substituting values
[tex]\mu = \frac{ 60 *10^{-3}}{2.0 }[/tex]
[tex]\mu = 0.03\ kg/m[/tex]
So
[tex]v_1 = \sqrt{ \frac{500}{0.03} }[/tex]
[tex]v_1 = 129.1 \ m/s[/tex]
Now given that the Tension, mass and length are constant the velocity of the second wave will same as that of first wave (reference PHYS 1100 )