Respuesta :

Answer:

[tex] \frac{2x + 4}{x} [/tex]

Option A is the correct option

Step-by-step explanation:

[tex] \frac{2 {x}^{2} - 10x - 28}{6x} \times \frac{6}{x - 7} [/tex]

Factor out 2 from the expression

[tex] \frac{2( {x}^{2} - 5x - 14)}{6x} \times \frac{6}{ x - 7} [/tex]

Weite -5x as a difference

[tex] \frac{2( {x}^{2} + 2x - 7x - 14)}{x} \times \frac{1}{ x - 7} [/tex]

Factor out

[tex] \frac{2(x(x + 2) - 7(x + 2))}{x} \times \frac{1}{x - 7} [/tex]

Factor X+2 from the expression

[tex] \frac{2(x + 2)(x - 7)}{x} \times \frac{1}{x - 7} [/tex]

Reduce the expression with x-7

[tex] \frac{2(x + 2)}{x} [/tex]

Distribute 2 through the parentheses

[tex] \frac{2x + 4}{x} [/tex]

Hope this helps...