Respuesta :
Answer:
[tex]x =-4\ or\ x = -14[/tex]
Step-by-step explanation:
Given
[tex]\sqrt{x + 9}^2 = \± \sqrt{25}[/tex]
Required
Determine the values of x
[tex]\sqrt{x + 9}^2 = \± \sqrt{25}[/tex]
Determine the square root of 25
[tex]\sqrt{x + 9}^2 = \± 5[/tex]
Evaluate the expression on the left hand side
[tex]({(x + 9)}^{\frac{1}{2}})^2 = \± 5[/tex]
Using laws of indices
[tex]{(x + 9)}^{\frac{1}{2} * 2} = \± 5[/tex]
[tex]{(x + 9)}^{1} = \± 5[/tex]
[tex]x + 9 = \± 5[/tex]
Split the expression into 2
[tex]x + 9 = 5\ or\ x + 9 = -5[/tex]
Subtract 9 from both sides in both cases
[tex]x + 9-9 = 5-9\ or\ x +9- 9 = -5-9[/tex]
[tex]x = 5-9\ or\ x = -5-9[/tex]
[tex]x =-4\ or\ x = -14[/tex]
Answer:
yes, the correct answers are:
-4 and -14
Step-by-step explanation:
got it right in edg 2020, hope this is of help :)