Apply the square root property of equality:
Isolate the variable.


StartRoot (x + 9) squared EndRoot = Plus or minus StartRoot 25 EndRoot
If x + 9 = 5, then x =
.

If x + 9 = –5, then x =
.

Respuesta :

Answer:

[tex]x =-4\ or\ x = -14[/tex]

Step-by-step explanation:

Given

[tex]\sqrt{x + 9}^2 = \± \sqrt{25}[/tex]

Required

Determine the values of x

[tex]\sqrt{x + 9}^2 = \± \sqrt{25}[/tex]

Determine the square root of 25

[tex]\sqrt{x + 9}^2 = \± 5[/tex]

Evaluate the expression on the left hand side

[tex]({(x + 9)}^{\frac{1}{2}})^2 = \± 5[/tex]

Using laws of indices

[tex]{(x + 9)}^{\frac{1}{2} * 2} = \± 5[/tex]

[tex]{(x + 9)}^{1} = \± 5[/tex]

[tex]x + 9 = \± 5[/tex]

Split the expression into 2

[tex]x + 9 = 5\ or\ x + 9 = -5[/tex]

Subtract 9 from both sides in both cases

[tex]x + 9-9 = 5-9\ or\ x +9- 9 = -5-9[/tex]

[tex]x = 5-9\ or\ x = -5-9[/tex]

[tex]x =-4\ or\ x = -14[/tex]

Answer:

yes, the correct answers are:

-4 and -14

Step-by-step explanation:

got it right in edg 2020, hope this is of help :)

ACCESS MORE