Respuesta :

Answer:

(3x2−2)⋅(2x−3)

Step-by-step explanation:

STEP

1

:

Equation at the end of step 1

 (((6 • (x3)) -  32x2) -  4x) +  6

STEP

2

:

Equation at the end of step

2

:

 (((2•3x3) -  32x2) -  4x) +  6

STEP

3

:

Checking for a perfect cube

3.1    6x3-9x2-4x+6  is not a perfect cube

Trying to factor by pulling out :

3.2      Factoring:  6x3-9x2-4x+6

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  -4x+6

Group 2:  6x3-9x2

Pull out from each group separately :

Group 1:   (2x-3) • (-2)

Group 2:   (2x-3) • (3x2)

              -------------------

Add up the two groups :

              (2x-3)  •  (3x2-2)

Which is the desired factorization

Trying to factor as a Difference of Squares:

3.3      Factoring:  3x2-2

Theory : A difference of two perfect squares,  A2 - B2  can be factored into  (A+B) • (A-B)

Proof :  (A+B) • (A-B) =

        A2 - AB + BA - B2 =

        A2 - AB + AB - B2 =

        A2 - B2

Note :  AB = BA is the commutative property of multiplication.

Note :  - AB + AB equals zero and is therefore eliminated from the expression.

Check :  3  is not a square !!

Ruling : Binomial can not be factored as the

difference of two perfect squares

Final result :

 (3x2 - 2) • (2x - 3)

ACCESS MORE