In the diagram, C and D are located such that AB is divided into 3 equal parts.
What are the coordinates of C and D?
![In the diagram C and D are located such that AB is divided into 3 equal parts What are the coordinates of C and D class=](https://us-static.z-dn.net/files/d90/fd79a72b8ddd60299f57e203ac4d873b.jpg)
we have
[tex] A(-3,6) \\ B(6,-3) [/tex]
Step [tex] 1 [/tex]
Find the distance AB in the x-coordinate
[tex] dABx=6-(-3)\\ dAB=9units [/tex]
Step [tex] 2 [/tex]
Find the distance AB in the y-coordinate
[tex] dABy=6-(-3)\\ dAB=9units [/tex]
Step [tex] 3 [/tex]
Find the coordinate of points C and D in the x-coordinate
Let
Cx------> x coordinate of point C
Dx------> x coordinate of point D
Ax------> x coordinate of point A
[tex] Cx=Ax+\frac{dABx}{3}\\ \\ Cx=-3+\frac{9}{3}\\ \\ Cx=0 [/tex]
[tex] Dx=Cx+\frac{dABx}{3}\\ \\ Dx=0+\frac{9}{3}\\ \\ Dx=3 [/tex]
Step [tex] 4 [/tex]
Find the coordinate of points C and D in the y-coordinate
Let
Cy------> y coordinate of point C
Dy------> y coordinate of point D
Ay------> y coordinate of point A
[tex] Cy=Ay-\frac{dABx}{3}\\ \\ Cy=6-\frac{9}{3}\\ \\ Cy=3 [/tex]
[tex] Dy=Cy-\frac{dABx}{3}\\ \\ Dy=-3-\frac{9}{3}\\ \\ Dy=0 [/tex]
therefore
point [tex] C(0,3) [/tex]
point [tex] D(3,0) [/tex]
see the attached figure
the answer is
the coordinates are
[tex] C(0,3)\\D(3,0) [/tex]