type the correct answer in the box. simplify this expression

Answer:
a) [tex]\frac{1}{3} m n[/tex]
Step-by-step explanation:
Explanation:-
Given expression
= [tex](\frac{(m^5 n^5)^{\frac{1}{6} } }{3 (mn)^{\frac{-1}{6} } } )[/tex]
we will apply formula
(ab)ⁿ = aⁿ b ⁿ
= [tex](\frac{(m^5 n^5)^{\frac{1}{6} } }{3(m)^{\frac{-1}{6} } (n)^{\frac{-1}{6} } } )[/tex]
= [tex]\frac{1}{3} m^{\frac{5}{6} } n^{\frac{5}{6} } m^{\frac{1}{6} } n^{\frac{1}{6} }[/tex]
base terms are equal then powers will be add
= [tex]\frac{1}{3} m^{\frac{5+1}{6} } n^{\frac{5+1}{6} }[/tex]
= [tex]\frac{1}{3} m^{1} n^{\frac{1}[/tex]
= [tex]\frac{1}{3} m n[/tex]