Complete and clearly written Question:
A firm has two plants that produce identical output. The cost functions are:
[tex]C_{1} = 309q - 8q^{2} + 0.5q^{3}[/tex] and [tex]C_{2} = 309q - 14q^{2} + 1.0q^{3}[/tex]. At what output level does the average cost curve of each plant reach its minimum?
Answer:
The first price reaches minimum average at 8 units of outputs
The second price reaches minimum average at 7 units of outputs
Explanation:
[tex]C_{1} = 309q - 8q^{2} + 0.5q^{3}[/tex]
[tex]A_{C_1} = C_1 /q = (309q - 8q^{2} + 0.5q^{3})/q\\A_{C_1} =309 - 8q + 0.5q^{2}[/tex]
[tex]\frac{dA_{C_{1} } }{dq} = -8 + q[/tex]
At minimum price, [tex]\frac{dA_{C_{1} } }{dq} = 0[/tex]
-8 + q = 0
q = 8
[tex]C_{2} = 309q - 14q^{2} + 1.0q^{3}[/tex]
[tex]A_{C_1} = C_1 /q = (309q - 14q^{2} + 1.0q^{3})/q\\A_{C_1} =309 - 14q + 1.0q^2}[/tex]
[tex]\frac{dA_{C_{1} } }{dq} = -14 + 2q[/tex]
At minimum price, [tex]\frac{dA_{C_{1} } }{dq} = 0[/tex]
-14 + 2q = 0
2q = 14
q = 7