Respuesta :
Answer:
[tex]42-1.833\frac{6.325}{\sqrt{10}}=38.334[/tex]
[tex]42+1.833\frac{6.325}{\sqrt{10}}=45.666[/tex]
The 90% confidence interval is given by [tex] 38.334 \leq \mu \leq 45.666[/tex]
Step-by-step explanation:
Notation
[tex]\bar X[/tex] represent the sample mean
[tex]\mu[/tex] population mean (variable of interest)
s represent the sample standard deviation
n represent the sample size
Confidence interval
The confidence interval for the mean is given by the following formula:
[tex]\bar X \pm t_{\alpha/2}\frac{s}{\sqrt{n}}[/tex] (1)
In order to calculate the mean and the sample deviation we can use the following formulas:
[tex]\bar X= \sum_{i=1}^n \frac{x_i}{n}[/tex] (2)
[tex]s=\sqrt{\frac{\sum_{i=1}^n (x_i-\bar X)}{n-1}}[/tex] (3)
The mean calculated for this case is [tex]\bar X=42[/tex]
The sample deviation calculated [tex]s=6.325[/tex]
The degrees of freedom are given by:
[tex]df=n-1=10-1=9[/tex]
The Confidence level is 0.90 or 90%, the significance is [tex]\alpha=0.1[/tex] and [tex]\alpha/2 =0.05[/tex], and the critical value would be [tex]t_{\alpha/2}=1.833[/tex]
Replacing we got:
[tex]42-1.833\frac{6.325}{\sqrt{10}}=38.334[/tex]
[tex]42+1.833\frac{6.325}{\sqrt{10}}=45.666[/tex]
The 90% confidence interval is given by [tex] 38.334 \leq \mu \leq 45.666[/tex]