Respuesta :

step 1

Find out the radius of the circle

Remember that

the circumference of the circle is

[tex]C=2\pi r[/tex]

C=6pi units -----> given

substitute

[tex]\begin{gathered} 6\pi=2\pi r \\ r=3\text{ units} \end{gathered}[/tex]

step 2

Find out the area of the complete circle

[tex]\begin{gathered} A=\pi r^2 \\ A=\pi\cdot3^2 \\ A=9\pi\text{ unit2} \end{gathered}[/tex]

Remember that the area of the complete circle subtends a central angle of 360 degrees

so

Applying proportion find out the area by a central angle of 72 degrees

9pi/360=x/72

solve for x

x=(9pi/360)*72

x=1.8pi unit2

therefore

The area of the shaded region is 1.8pi unit2

Find out the error

RELAXING NOICE
Relax