Answer:
276 N and 225 N
Explanation:
Draw a free body diagram. There are three forces on the hoist:
Weight force 350 N pulling down,
Tension force T₁ pulling up and left 50° from the horizontal,
Tension force T₂ pulling up and right 38° from the horizontal.
Sum of forces in the x direction:
∑F = ma
T₂ cos 38° − T₁ cos 50° = 0
T₂ cos 38° = T₁ cos 50°
T₂ = T₁ cos 50° / cos 38°
Sum of forces in the y direction:
∑F = ma
T₂ sin 38° + T₁ sin 50° − 350 = 0
T₂ sin 38° + T₁ sin 50° = 350
Substitute:
(T₁ cos 50° / cos 38°) sin 38° + T₁ sin 50° = 350
T₁ cos 50° tan 38° + T₁ sin 50° = 350
T₁ (cos 50° tan 38° + sin 50°) = 350
T₁ = 350 / (cos 50° tan 38° + sin 50°)
T₁ = 276 N
T₂ = T₁ cos 50° / cos 38°
T₂ = 225 N