Answer:
a) v max = 0.1376 m,/s
b) a max = 3.212 m/s^2
Explanation:
a) To find the maximum linear sped of any part of the bit, you use the following formula:
[tex]v=\omega r[/tex] (1)
v: linear speed
w: angular velocity of the bit = 1400 rev/min
r: distance to the center of the bit
You can observe that for r=rmax you obtain the maximum linear speed.
rmax = diameter/2 = 11.8mm/2 = 5.9mm
Before you replace the values of w and r in the equation (1), you convert to appropriate units:
[tex]\omega=1400rev/min*\frac{1min}{60s}=23.333\frac{rev}{s}[/tex]
Then, you obtain:
[tex]v_{max}=\omega r_{max}=(23.333rev/s)(5.9mm)=137.666\frac{mm}{s}[/tex]
[tex]v_{max}=137.666\frac{mm}{s}*\frac{1m}{1000mm}=0.1376\frac{m}{s}[/tex]
the maximum linear speed of the bit is 0.1376 m/s
b) The maximum radial acceleration is given by:
[tex]a_r_{max}=\frac{v_{max}^2}{r_{max}}\\\\a_{rmax}=\frac{(137.666mm/s)^2}{5.9mm}=3212.222\frac{mm}{s^2}\\\\a_{rmax}=3212.222*\frac{mm}{s^2}*\frac{1m}{1000mm}=3.212\frac{m}{s^2}[/tex]
the maximum radial acceleration is 3.212 m/s^2