Respuesta :
Answer:
The explicit formula of the sequence is [tex]a_n=5(\frac{1}{5})^{n-1}[/tex] for [tex]n \geq 2[/tex]
Step-by-step explanation:
Sixth term in a geometric sequence =[tex]\frac{1}{625}[/tex]
Common ratio =[tex]\frac{1}{5}[/tex]
Formula of nth term =[tex]a_n=ar^{n-1}[/tex]
Substitute the values
So,[tex]\frac{1}{625}=a(\frac{1}{5})^{6-1}\\\frac{1}{625}=a(\frac{1}{5})^{5}\\\frac{1}{625} \times 5^5=a[/tex]
5=a
Substitute the value in 1
So,[tex]a_n=5(\frac{1}{5})^{n-1}[/tex]
So, Option C is true
Hence the explicit formula of the sequence is [tex]a_n=5(\frac{1}{5})^{n-1}[/tex] for [tex]n \geq 2[/tex]