If the sixth term in a geometric sequence is 1/625, and the common ratio is 15, find the explicit formula of the sequence.

A. an=(15)n−1 for n ≥ 1
B. an=(5)⋅(15)n−1 for n ≥ 2
C. an=(5)⋅(15)n−1 for n ≥ 1
D. an=(1)⋅(15)n−1 for n ≥ 2

Respuesta :

Answer:

The explicit formula of the sequence is [tex]a_n=5(\frac{1}{5})^{n-1}[/tex] for [tex]n \geq 2[/tex]

Step-by-step explanation:

Sixth term in a geometric sequence =[tex]\frac{1}{625}[/tex]

Common ratio =[tex]\frac{1}{5}[/tex]

Formula of nth term =[tex]a_n=ar^{n-1}[/tex]

Substitute the values

So,[tex]\frac{1}{625}=a(\frac{1}{5})^{6-1}\\\frac{1}{625}=a(\frac{1}{5})^{5}\\\frac{1}{625} \times 5^5=a[/tex]

5=a

Substitute the value in 1

So,[tex]a_n=5(\frac{1}{5})^{n-1}[/tex]

So, Option C is true

Hence the explicit formula of the sequence is [tex]a_n=5(\frac{1}{5})^{n-1}[/tex] for [tex]n \geq 2[/tex]

Answer :)

C is the answer... so yea ★

ACCESS MORE