To summarize, we're given
[tex]\begin{cases}z=f(x,y)\\x=x(u,v)\\y=y(u,v)\\x(1,2)=4\\y(1,2)=3\end{cases}[/tex]
and we're asked to find the value of [tex]z_u(4,3)[/tex] (I think there's a typo in your question) given that
[tex]\begin{cases}f_x(1,2)=a\\f_y(1,2)=c\\x_u(1,2)=m\\y_u(1,2)=p\\f_x(4,3)=b\\f_y(4,3)=d\\x_v(1,2)=n\\y_v(1,2)=q\end{cases}[/tex]
By the chain rule, we have
[tex]\dfrac{\partial z}{\partial u}=\dfrac{\partial z}{\partial x}\dfrac{\partial x}{\partial u}+\dfrac{\partial z}{\partial y}\dfrac{\partial y}{\partial u}[/tex]
or in subscript notation,
[tex]z_u=z_xx_u+z_yy_u[/tex]
Then
[tex]z_u(4,3)=z_x(4,3)x_u(1,2)+z_y(4,3)y_u(1,2)=\boxed{bm+dp}[/tex]