Respuesta :
Answer:
a) 90 % of confidence interval is determined by
[tex](x^{-} -t_{\frac{\alpha }{2} } \frac{S}{\sqrt{n} } , x^{-} +t_{\frac{\alpha }{2} } \frac{S}{\sqrt{n} } )[/tex]
b) The 90% confidence intervals for the population mean
(13.6572 , 22.3428)
Step-by-step explanation:
Step(i):-
Given data
Non residential college students 25 21 26 6 25 14 26 24 7 10 14
Mean of Non residential college students
x⁻ = ∑x/n
= [tex]\frac{25+21+26+6+25+14+26+24+7+10+14}{11}[/tex]
x⁻ = 18
now
Non residential
college students 'x' : 25 21 26 6 25 14 26 24 7 10 14
x - x⁻ : 7 3 8 -12 7 -4 8 6 -11 -8 -4
(x-x⁻)² : 49 9 64 144 49 16 64 36 121 64 16
[tex]s^{2} = \frac{49+9+64+144+49+16+64+36+121+64+16 }{11-1}[/tex]
S² = 63.2
S = √63.2 = 7.949
Step(ii):-
The 90% confidence the population mean commute for non-residential college students is between and miles.
[tex](x^{-} -t_{\frac{\alpha }{2} } \frac{S}{\sqrt{n} } , x^{-} +t_{\frac{\alpha }{2} } \frac{S}{\sqrt{n} } )[/tex]
Degrees of freedom
ν =n-1 =11-1 = 10
t [tex]t_{\frac{0.10}{2} } = t_{0.05} = 1.812[/tex]
Step(iii):-
The 90% confidence the population mean commute for non-residential college students is between and miles.
[tex](x^{-} -t_{\frac{\alpha }{2} } \frac{S}{\sqrt{n} } , x^{-} +t_{\frac{\alpha }{2} } \frac{S}{\sqrt{n} } )[/tex]
[tex]((18- 1.812 \frac{7.949}{\sqrt{11} } , (18-+1.812 \frac{7.949}{\sqrt{11} })[/tex]
(18 - 4.3428 , 18 + 4.3428)
(13.6572 , 22.3428)
Conclusion:-
The 90% confidence the population mean commute for non-residential college students is between and miles.
(13.6572 , 22.3428)