Answer:
[tex]W=5.16 J[/tex]
Explanation:
Using the Hooke's law we can find the elasticity constant:
[tex]F=-k\Delta x[/tex]
[tex]30.8=-k*0.177[/tex]
[tex]k=|-\frac{30.8}{0.177}|[/tex]
[tex]k=174 N/m[/tex]
Now, we know that the work done is equal to the elastic energy, so we will have:
[tex]W=\frac{1}{2}k(x_{2}^{2}-x_{1}^{2})[/tex]
x2 is the final distance (x2 = 0.177+0.124 = 0.301 m)
x1 is the initial distance (x1 = 0.177 m)
[tex]W=\frac{1}{2}*174(0.301^{2}-0.177^{2})[/tex]
[tex]W=5.16 J[/tex]
I hope it helps you!