Respuesta :
Answer:
C. The 6th term is positive/negative 80
Step-by-step explanation:
Given
Geometric Progression
[tex]T_5 = 160[/tex]
[tex]T_7 = 40[/tex]
Required
[tex]T_6[/tex]
To get the 6th term of the progression, first we need to solve for the first term and the common ratio of the progression;
To solve the common ratio;
Divide the 7th term by the 5th term; This gives
[tex]\frac{T_7}{T_5} = \frac{40}{160}[/tex]
Divide the numerator and the denominator of the fraction by 40
[tex]\frac{T_7}{T_5} = \frac{1}{4}[/tex] ----- equation 1
Recall that the formula of a GP is
[tex]T_n = a r^{n-1}[/tex]
Where n is the nth term
So,
[tex]T_7 = a r^{6}[/tex]
[tex]T_5 = a r^{4}[/tex]
Substitute the above expression in equation 1
[tex]\frac{T_7}{T_5} = \frac{1}{4}[/tex] becomes
[tex]\frac{ar^6}{ar^4} = \frac{1}{4}[/tex]
[tex]r^2 = \frac{1}{4}[/tex]
Square root both sides
[tex]r = \sqrt{\frac{1}{4}}[/tex]
r = ±[tex]\frac{1}{2}[/tex]
Next, is to solve for the first term;
Using [tex]T_5 = a r^{4}[/tex]
By substituting 160 for T5 and ±[tex]\frac{1}{2}[/tex] for r;
We get
[tex]160 = a \frac{1}{2}^{4}[/tex]
[tex]160 = a \frac{1}{16}[/tex]
Multiply through by 16
[tex]16 * 160 = a \frac{1}{16} * 16[/tex]
[tex]16 * 160 = a[/tex]
[tex]2560 = a[/tex]
Now, we can easily solve for the 6th term
Recall that the formula of a GP is
[tex]T_n = a r^{n-1}[/tex]
Here, n = 6;
[tex]T_6 = a r^{6-1}[/tex]
[tex]T_6 = a r^5[/tex]
[tex]T_6 = 2560 r^5[/tex]
r = ±[tex]\frac{1}{2}[/tex]
So,
[tex]T_6 = 2560( \frac{1}{2}^5)[/tex] or [tex]T_6 = 2560( \frac{-1}{2}^5)[/tex]
[tex]T_6 = 2560( \frac{1}{32})[/tex] or [tex]T_6 = 2560( \frac{-1}{32})[/tex]
[tex]T_6 = 80[/tex] or [tex]T_6 = -80[/tex]
[tex]T_6 =[/tex]±80
Hence, the 6th term is positive/negative 80