Respuesta :

Answer:

i hope that helps......

Ver imagen Bossleng

For the given equation, the value of [tex]x[/tex] is [tex]2[/tex].

[tex]8^{\frac{1}{6}} \times 2^{x} = 32^{\frac{1}{2}}[/tex]

[tex](2^{3})^{\frac{1}{6}} \times 2^{x} = (2^{5})^{\frac{1}{2}}[/tex]

[tex]2^{\frac{1}{2}} \times 2^{x} = 2^{\frac{5}{2}}[/tex]

[tex]2^{\frac{1}{2}+x}=2^{\frac{5}{2}}[/tex]

Since, the bases are equal, we can compare the powers.

[tex]\frac{1}{2}+x=\frac{5}{2}[/tex]

[tex]x=\frac{5}{2}-\frac{1}{2}[/tex]

[tex]x=\frac{5-1}{2}[/tex]

[tex]x=\frac{4}{2}[/tex]

[tex]x=2[/tex]

So, the value of [tex]x[/tex] is [tex]2[/tex].

Learn more here:

https://brainly.com/question/4533599?referrer=searchResults

ACCESS MORE