Respuesta :

Space

Answer:

[tex]\displaystyle y' = 2 \csc^2 (2x)[/tex]

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           [tex]\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)[/tex]

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                 [tex]\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)[/tex]

Explanation:

Step 1: Define

Identify

[tex]\displaystyle y = - \cot (2x)[/tex]

Step 2: Differentiate

  1. Trigonometric Differentiation [Derivative Rule - Chain Rule]:                   [tex]\displaystyle y' = - \big(- \csc^2 (2x) \big)(2x)'[/tex]
  2. Simplify:                                                                                                         [tex]\displaystyle y' = \csc^2 (2x)(2x)'[/tex]
  3. Basic Power Rule [Derivative Property - Multiplied Constant]:                 [tex]\displaystyle y' = 2 \csc^2 (2x)[/tex]

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

ACCESS MORE