Respuesta :

Answer:

Option B.

Step-by-step explanation:

Consider the given geometric series is

[tex]S=20-5+\dfrac{5}{4}-\dfrac{5}{16}+...[/tex]

We need to find the sum of given series.

Here, first term is a=20 and common ratio is

[tex]r=\dfrac{-5}{20}=-\dfrac{1}{4}[/tex]

The sum of infinite GP is

[tex]S=\dfrac{a}{1-r}[/tex]

Substitute [tex]a=20\text{ and }r=\dfrac{-5}{20}=-\dfrac{1}{4}[/tex].

[tex]S=\dfrac{20}{1-(-\dfrac{1}{4})}[/tex]

[tex]S=\dfrac{20}{\dfrac{5}{4}}[/tex]

[tex]S=\dfrac{20\times 4}{5}[/tex]

[tex]S=16[/tex]

Therefore, the correct option is B.

Answer:

B edge

Step-by-step explanation:

RELAXING NOICE
Relax