In a Young’s interference experiment, the two slits are separated by 0.150 mm and the incident light includes two wavelengths: l1 5 540 nm (green) and l2 5 450 nm (blue). The overlapping interference patterns are observed on a screen 1.40 m from the slits. Calculate the minimum distance from the center of the screen to a point where a bright fringe of the green light coincides with a bright fringe of the blue light:_____

Respuesta :

yemmy

Answer:

2.52 × 10⁻² cm

Explanation:

The distance of bright fringe from the center of the screen is given by the formula

                [tex]y = \frac{m\lambda D}{d}[/tex]

Here, wavelength is λ, Distance of the screen from the slits is D, seperation between the

slits is d.

   

Separation between the slits, d = 0.15 mm

                                                     [tex]= 0.15 * 10^{-3} m[/tex]

Distance of the screen from the slits = 1.40 m

We have a wavelength, λ1 = 540 nm

                                           = [tex]540 * 10^{-9} m[/tex]

By substituting all these values in the above equation we get

                y1 = mλD/d

                [tex]y1 = m(540 \times 10^{-9} m)(1.40 m)/(0.15 \times 10^{-3} m)[/tex]

                [tex]y1 = m(5.04 * 10^{-3} m)[/tex]

We have a wavelength, λ2 = 450 nm

                                           = [tex]450 * 10^-9 m[/tex]

By substituting all these values in the above equation we get

                [tex]y_2 = \frac{m\lambda D}{d}[/tex]

                [tex]y_2 = m(450 * 10^{-9} m)(1.40 m)/(0.15 * 10^{-3} m)[/tex]

                [tex]y_2 = m'(4.20 * 10^{-3} m)[/tex]

According to the problem, these two distance are coincides with each other.

So,

                           [tex]y_1 = y_2[/tex]

[tex]m(5.04 * 10^{-3} m) = m'(4.20 * 10^{-3} m)[/tex]

by testing values, the above equation is satisfied only when, m = 5 and m' = 6

Then from the above we have

                           y1 = y2 = 0.0252 m

                                         = 2.52 × 10⁻² cm

RELAXING NOICE
Relax