Respuesta :
Answer:
Kc = 1.0844
Maximum shear = 848.43 Mpa
Explanation:
Find attached of the calculations


Answer:
Kc = 1.0844
Smax = 848.4352 MPa
Explanation:
Given data:
d = diameter = 3 mm
D = outside diameter = 35 mm
N = coils = 16
Spring fully compressed
Question: What is the curvature correction factors, Kc = ? and the maximum shear, Smax = ?
First, Dm needs to be calculated:
Dm = D - d = 35 - 3 = 32 mm
The spring index:
[tex]C=\frac{D_{m} }{d} =\frac{32}{3} =10.6667[/tex]
[tex]K_{c} =\frac{(\frac{4C-1}{4C-4})+\frac{0.615}{C} }{1+\frac{0.5}{C} } =\frac{\frac{4*10.6667-1}{4*10.6667-4} +\frac{0.615}{10.6667} }{1+\frac{0.5}{10.6667} } =1.0844[/tex]
Properties at a diameter of 3 mm:
Area = A = 2211 MPa mm^m
m = 0.145
The shear stress:
[tex]S=\frac{A}{d^{m} } =\frac{2211}{3^{0.145} } =1885.4115MPa[/tex]
According the distortion theory, the maximum shear:
[tex]S_{max} =0.45S=0.45*1885.4115=848.4352MPa[/tex]
