What is the difference of the rational expressions below?
![What is the difference of the rational expressions below class=](https://us-static.z-dn.net/files/df1/184f33180de0015b233a2f4a316da899.png)
Answer: A
Step-by-step explanation:
We need to get the denominators to be same first before we can do anything to the numerator.
The LCD (lowest common denominator) is [tex]3x^{3}[/tex]. To find the LCD, multiply the denominators together: [tex]x^{3}[/tex] · [tex]3x[/tex] = [tex]3x^{3[/tex].
Below, we are trying to get the denominators to equal the same or to [tex]3x^{3}[/tex].
[tex]\frac{3}{3} (\frac{4}{x^{3} } ) - \frac{x^{2} }{x^{2} } (\frac{2x-1}{3x} )[/tex]
[tex]\frac{12}{3x^{3} } - \frac{2x^{3}-x^{2} }{3x^{3} }[/tex]
Now that the denominators are the same, we can subtract the numerators from each other.
[tex]\frac{ 12 - (2x^{3} -x^{2})\\}{3x^{3} } \\[/tex]
[tex]\frac{12-2x^{3} +x^{2} }{3x^{3} }[/tex]
Now, we can just reorganize the variables.
Answer: A or [tex]\frac{-2x^{3} + x^{2}+12 }{3x^{3} }[/tex]