Respuesta :

Answer:

Option C is the right choice where length of the arc is 25/18π.

Step-by-step explanation:

Given:

Length of the radius of the circle, [tex]r[/tex] = 2 unit

Angle between the arc, [tex]\theta[/tex] = 125°

We have to find the arc length.

Let the arc length JL be "a" unit.

Formula to be used:

Arc length = (Circumference times angle ) / 360°

Using the above formula and plugging the values.

⇒ Arc length, JL, 'a' = [tex]2\pi r\times (\frac{\theta}{360})[/tex]

⇒ [tex]a=2\pi r\times (\frac{\theta}{360})[/tex]

⇒ [tex]a=2\pi (2)\times (\frac{125}{360})[/tex]

⇒ [tex]a=4\pi \times (\frac{125}{360})[/tex]

⇒ [tex]a=\frac{4\pi \times 125}{360}[/tex]

⇒ [tex]a=\frac{500\pi }{360}[/tex]

⇒ [tex]a=\frac{50\pi }{36}[/tex]

⇒ [tex]a=\frac{25\pi }{18}[/tex]          ... reducing to lowest term.

So,

The length of the arc JL is 25/18π and option C is the right choice.

Ver imagen jitushashi143
ACCESS MORE