Respuesta :
Complete Question
The diagram for this question is shown on the first uploaded image
Answer:
The initial angular momentum is [tex]L_i= 0.134 Kg .m^2/s[/tex]
Explanation:
From the question we are told that
The mass of the rod is [tex]M = 3.5 kg[/tex]
The mass of the ball is [tex]m =45g = \frac{45}{1000} = 0.045kg[/tex]
The speed is [tex]v = 5.02 m/s[/tex]
The angle the ball strikes the rod is [tex]\theta = 42^o[/tex]
The distance from the center of the rod is [tex]D = \frac{2}{3} L[/tex]
The length L is [tex]= 1.2m[/tex]
The initial angular momentum of the ball is mathematically represented as
[tex]L_i = m\ v\ D\ cos \theta[/tex]
Substituting the value
[tex]L_i = 45*10^{-3} * 5.02 * \frac{2}{3} * 1.2 * cos (42)[/tex]
[tex]= 0.134 Kg .m^2/s[/tex]
![Ver imagen okpalawalter8](https://us-static.z-dn.net/files/d36/7d83f80e13bf4673849e2bfa33316f79.png)
Following are the calculation of the initial angular momentum of the ball:
Given:
[tex]M = 3.5 \ kg \\\\m = 45\ g = 0.045\ kg\\\\ v = 5.02\ \frac{m}{s}\\\\ \theta = 42^{\circ}\\\\D = \frac{2}{3}\ L\\\\ L = 1.2\ m\\\\[/tex]
To find:
Li=?
Solution:
Using formula:
[tex]Li= m v D \cos \theta=mv\times \frac{2L}{3}\cos \theta\\\\[/tex]
[tex]=0.045 \times 5.02 \times \frac{2 \times 1.2}{3}\cos 42^{\circ}\\\\=0.2259 \times\frac{2 \times 1.2}{3}\cos 42^{\circ}\\\\=0.18072\times \cos 42^{\circ}\\\\=0.13430113286\\\\=13.43 \times 10^{-2} \ \frac{kg\ m^2}{s}\\\\[/tex]
Learn more:
brainly.com/question/15104254